

Revised 1/30/18

Preparing Raspberry Pi

Install Raspbian Jessie on the Raspberry Pi

Click **HERE** to download Raspbian Jessie.

Expand file system

Run the following command line within the Raspberry Pi's terminal.

sudo raspi-config

You should see a blue screen with options in a gray box in the center, like so

Expand Filesystem	Ensures that all of the SD card s
Change User Password	Change password for the default u
Boot Options	Choose whether to boot into a des
Wait for Network at Boot	Choose whether to wait for networ
Internationalisation Options	Set up language and regional sett
Enable Camera	Enable this Pi to work with the R
Add to Rastrack	Add this Pi to the online Raspber
Overclock	Configure overclocking for your P
Advanced Options	Configure advanced settings
About raspi-config	Information about this configurat
<select></select>	<finish></finish>

Choose "Expand Filesystem"

Choosing this option will expand your installation to fill the rest of the SD card, giving you more space to use for files. You will need to reboot the Raspberry Pi to make this available.

Atlas-Scientific.com

Revised 1/30/18

Update and Upgrade Packages

First, you will need to update your system's package list by entering the following command in terminal.

sudo apt-get update

Next, upgrade your installed packages to their latest versions with the command.

sudo apt-get upgrade

Running the upgrade may take up to 30 minuets depending on which version of the Raspberry Pi you have.

Download the sample code

To download the Atlas Scientific[™] sample code,run the following commands within the Raspberry Pi's terminal.

cd ~

git clone https://github.com/AtlasScientific/Raspberry-Pi-sample-code.git

Once the sample code has finished downloading, you will be almost ready to begin using the Atlas Scientific[™] EZO[™] class circuits with your updated Raspberry Pi.

There are three different ways to interact with the Atlas Scientific[™] EZO[™] class circuits with your Raspberry Pi.

- USB Mode
- I²C Mode
- UART Mode

Raspberry Pi sample code

Revised 1/30/18

Sample code compatibility chart

The Raspberry Pi Foundation has failed to make a working UART on the Pi 3. Because of this no UART connected devices can run on a Raspberry Pi 3.

Atlas Scientific Environmental Robotics

Revised 1/30/18

USB Mode

USB mode will let you communicate through the Raspberry Pi's USB port to any FTDI based USB device. This includes all USB based Atlas Scientific[™] devices.

First, we need to install the libftdi package.

sudo apt-get install libftdi-dev

Next, we need to install the pylibftdi python package.

sudo pip install pylibftdi

We need to create a udev rule file by entering the following command in terminal.

sudo nano /etc/udev/rules.d/99-libftdi.rules

Replace the current rule with following revised rule below.

```
SUBSYSTEMS=="usb", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6015",
GROUP="dialout", MODE="0660", SYMLINK+="FTDISerial_Converter_$attr{serial}"
```

Press "CTRL+X", then "Y" and hit Enter to save & exit.

AtlasScientific Environmental Robotics

Revised 1/30/18

Once the updated udev rule has been saved, a restart is required in order to apply changes to the rule.

sudo service udev restart

Lastly, we need to modify the FTDI python driver.

Since Atlas Scientific^M FTDI devices use USB PID (0x6015), we need to tweak the original FTDI driver, by entering the following command in terminal.

sudo nano /usr/local/lib/python2.7/dist-packages/pylibftdi/driver.py

Move down to the line 70 and add **0x6015** at the end of line.

Original line

USB_PID_LIST = [0x6001, 0x6010, 0x6011, 0x6014]

Modified line

USB_PID_LIST = [0x6001, 0x6010, 0x6011, 0x6014, 0x6015]

Press "CTRL+X", then "Y" and hit Enter to save & exit.

Raspberry Pi sample code

Revised 1/30/18

Your Atlas Scientific[™] EZO[™] class circuits are almost ready to work with your Raspberry Pi, we just have to run a simple test first.

Connect your FTDI based USB device and run the following command in the terminal.

sudo python -m pylibftdi.examples.list_devices

The program will report information about each connected device. You will get result like this:

FTDI:FT230X Basic UART:DA00TN6Q

Each FTDI adaptor has its own unique serial number.

In the result above, serial number is DA00TN6Q

Using pylibftdi module for Atlas Scientific[™] EZO[™] class circuits

Run the following commands in terminal.

cd ~/Raspberry-Pi-sample-code

sudo python ftdi.py

The program will present a list of available FTDI devies. Enter the index of the device you wish to use, and you will now be able to control an Atlas Scientific[™] EZO[™] class circuit via the USB port.

Please	sele	ect a	devi	ice	index:
Index:	1	Seria	al:	DAO	000JSH
Index:	0	Seria	al:	DAO	HQION
Discove	red	FTDI	seri	ial	numbers:

For more details on the commands and responses, please refer to the datasheets of each Atlas Scientific[™] EZO[™] class circuit in use.

Atlas-Scientific.com

AtlasScientific Environmental Robotics

Revised 1/30/18

I²C Mode

Before we can start using the Atlas Scientific[™] EZO[™] class circuits with your Raspberry Pi, we have to install and enable I²C bus on the Raspberry Pi.

Run the following commands in terminal.

sudo apt-get install python-smbus

sudo apt-get install i2c-tools

Once those have finished installing, we need to head back to the Raspberry Pi config.

sudo raspi-config

You should see a blue screen with options in a grey box in the center, like so

Raspberry Pi Software Cor	nfiguration Tool (raspi-config)
1 Expand Filesystem 2 Change User Password 3 Boot Options 4 Wait for Network at Boot 5 Internationalisation Options 6 Enable Camera 7 Add to Rastrack 8 Overclock 9 Advanced Options 0 About raspi-config	Ensures that all of the SD card s Change password for the default u Choose whether to boot into a des Choose whether to wait for networ Set up language and regional sett Enable this Pi to work with the R Add this Pi to the online Raspber Configure overclocking for your P Configure advanced settings Information about this configurat
<select></select>	<finish></finish>

Choose "Advanced Options"

Raspberry Pi sample code

Revised 1/30/18

Rasp	berry Pi Software	Configuration Tool (raspi-config)	
Al Overscan A2 Hostname A3 Memory S A4 SSH A5 SPI A6 I2C A7 Serial A8 Audio A9 1-Wire AA GPIO Ser	split	You may need to configure oversca Set the visible name for this Pi Change the amount of memory made Enable/Disable remote command lin Enable/Disable automatic loading Enable/Disable automatic loading Enable/Disable shell and kernel m Force audio out through HDMI or 3 Enable/Disable one-wire interface Enable/Disable remote access to G	← 開設 開設 開設 □ 開設 開設 置設
	<select></select>	<back></back>	

Choose "I2C"

Would you like	the ARM I2C interfac	e to be enabled?
	<yes></yes>	<no></no>

Choose "YES"

Revised 1/30/18

	The ARM I2C interface is enabled	
<0,<>		
< <u>0k></u>		
	< <u>Ok></u>	

Hit "OK" and reboot the Raspberry Pi.

sudo reboot

Raspberry Pi sample code

Revised 1/30/18

Your Atlas Scientific[™] EZO[™] class circuits are almost ready to work with your Raspberry Pi, we just have to run a simple test first.

Connect your EZO[™] class circuit, and run the following command in terminal.

sudo i2cdetect -y 1

	0	1	2	3	4	5	6	7	8	9	a	b	С	d	e	f
00:																
10:																
20:																
30:																
40:																
50:																
60:				63												
70:																

ess list	
Decimal	Hex
99	0x63
98	0x62
97	0x61
100	0x64
102	0x66
103	0x67
	ress list Decimal 99 98 97 100 102 103

The program will report information about each connected I^2C device. This shows that an I^2C address (0x63) is in use.

Run the following commands in terminal.

```
cd ~/Raspberry-Pi-sample-code
```

sudo python i2c.py

Each Atlas Scientific[™] device has a different default I²C address.

To see a list of connected I²C devices from the program, use the command

List_addr

The last step is to tell the Raspberry Pi which circuit you want to talk to. For example, if you give the command (*address*, 99), the Raspberry Pi will now send all command to the pH circuit. Only after the Raspberry Pi knows which EZO[™] circuit to communicate with, can you send EZO commands. Such as, "I", "status", "R", etc...

ADDRESS,99

This will now tell the Raspberry Pi to communicate with the EZO[™] pH circuit 99 (0x63)

For more details on the commands, responses and I²C addresses, please refer to the datasheets of each Atlas Scientific[™] EZO[™] class circuit in use.

Raspberry Pi sample code

Revised 1/30/18

UART Mode

The Raspberry Pi Foundation has failed to make a working UART on the Pi 3. Because of this no UART connected devices can run on a Raspberry Pi 3 GPIO pins.

Before we can start using the Atlas Scientific[™] EZO[™] class circuits with your Raspberry Pi, we have to make a small tweak to the boot command line.

Run the following command line.

sudo nano /boot/cmdline.txt

You should see something that looks a lot like this:

	GNU nano	2.2.6		File:	/boot/cmdline.txt			
dv	c_otg.lpm	_enable=0	console=tty1	console=serial0,115	200 root=/dev/mmcblk0p2	rootfstype=ext4	elevator=deadline	rootwait
			1	2				
			_	_	_		_	_
^G	Get Help		^0 WriteOut	t ^R Read	i File <mark>^Y</mark> Prev	Page	^K Cut Text	[^] C Cur Pos
ΛX	Exit		^J Justify	^W Wher	ce Is 🛛 🔨 Next	Page	^U UnCut Text	^T To Spell

You might see two seperate commands listed for the "console".

This can cause a conflict in the serial port.

To correct this issue, *delete* the command: console=serial0,115200

The command line should now look like this:

Press "CTRL+X", then "Y" and hit Enter to save & exit.

Revised 1/30/18

We need to ensure PySerial is installed for Python

sudo pip install pyserial

Run the following commands in terminal.

cd ~/Raspberry-Pi-sample-code

sudo python uart.py

AtlasScientific Environmental Robotics

Revised 1/30/18

Side note

Does your Raspberry Pi have an annoying black border around the OS?

If so, here is how to remove it.

Run the following command line within the Raspberry Pi's terminal.

sudo raspi-config

Choose the option "Advanced Options"

Raspberry Pi sample code

Revised 1/30/18

Al Overscan A2 Hostname A3 Memory Split A4 SSH A5 SPI A6 I2C A7 Serial A8 Datio		You may need to configure oversca Set the visible name for this Pi Change the amount of memory made Enable/Disable remote command lin Enable/Disable automatic loading Enable/Disable automatic loading Enable/Disable shell and kernel m
AG AUGIO A9 1-Wire AA GPIO Server	<select></select>	Enable/Disable one-wire interface

Then, choose the option "A1 Overscan"

Would you like to ena overscan?	able compensation for	displays with
<yes></yes>	<no></no>	

It will ask if you would like to enable compensation for displays with overscan? say " \mathbf{NO} "

The black border will know be gone. Enjoy!

