

D. 1. 1.2/22/10

Revised 3/23/18

EZO-RTDTM

Embedded Temperature Circuit

Reads **Temperature**

Range -126.000 °C - 1254 °C

Resolution 0.001

Accuracy +/- $(0.10^{\circ}C + 0.0017 \times {^{\circ}C})$

Max rate 1 reading per sec

Supported probes PT-100 or PT-1000 RTD

Calibration Single point

Temperature output °C, °K, or °F

Data protocol UART & I²C

Default I²C address 102 (0x66)

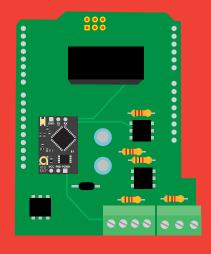
Operating voltage 3.3V - 5.5V

Data format ASCII

Onboard Data Logger 50 Readings

Electrical Isolation not needed

STOP


SOLDERING THIS DEVICE VOIDS YOUR WARRANTY.

This is sensitive electronic equipment. Get this device working in a solderless breadboard first. Once this device has been soldered it is no longer covered by our warranty.

This device has been designed to be soldered and can be soldered at any time. Once that decision has been made, Atlas Scientific no longer assumes responsibility for the device's continued operation. The embedded systems engineer is now the responsible party.

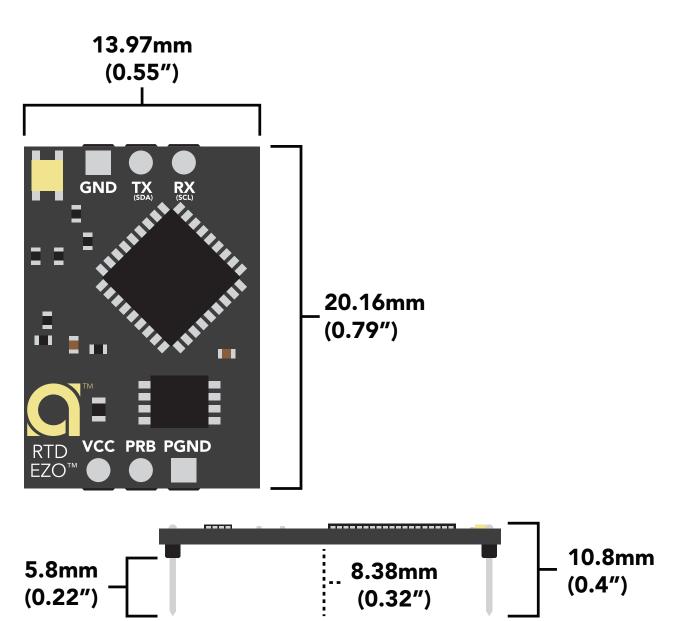
Get this device working in a solderless breadboard first!

Do not embed this device without testing it in a solderless breadboard!

Table of contents

Circuit dimensions	4	Using other brand PT-100/PT-1000	7
Power consumption	4	Operating principle	8
Absolute max ratings	4	Calibration theory	9
Temperature circuit range	5	On board data logger	10
Temperature circuit accuracy	5	Correct wiring	12
Atlas Scientific PT-1000 probe	6	Available data protocols	13

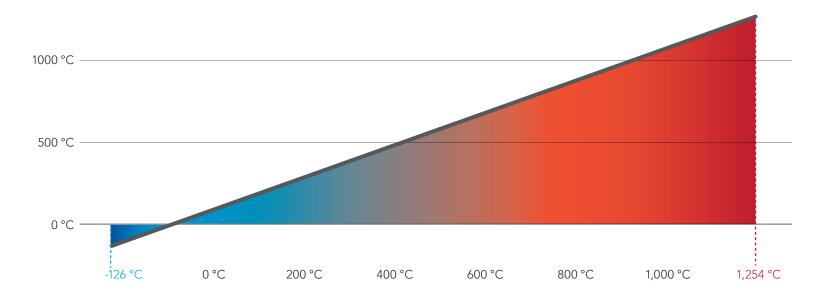
UART


UART mode	15
Default state	16
Receiving data from device	17
Sending commands to device	18
LED color definition	19
UART quick command page	20
LED control	21
Find	22
Continuous reading mode	23
Single reading mode	24
Calibration	25
Export/import calibration	26
Temperature scale	27
Enable/disable data logger	28
Memory recall	29
Memory clear	30
Naming device	31
Device information	32
Response codes	33
Reading device status	34
Sleep mode/low power	35
Change baud rate	36
Protocol lock	37
Factory reset	38
	39
Change to I ² C mode	
Manual switching to I ² C	40

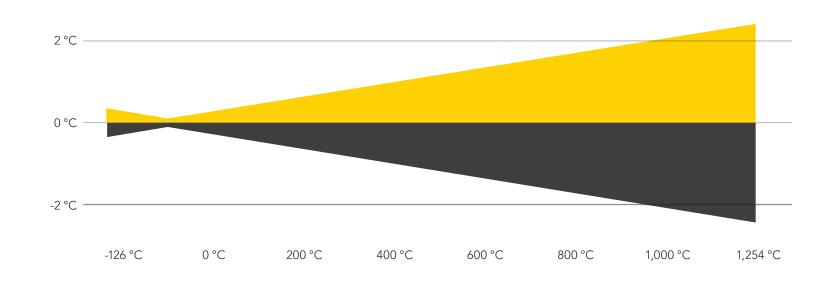
²C

I ² C mode	42
Sending commands	43
Requesting data	44
Response codes	45
LED color definition	46
I ² C quick command page	47
LED control	48
Find	49
Taking reading	50
Calibration	51
Export/import calibration	52
Temperature scale	53
Enable/disable data logger	54
Memory recall	55
Memory clear	56
Device information	57
Reading device status	58
Sleep mode/low power	59
Protocol lock	60
I ² C address change	61
Factory reset	62
Change to UART mode	63
Manual switching to UART	64

EZO[™] circuit dimensions



			_	
	LED	MAX	STANDBY	SLEEP
5V	ON	16 mA	15.4 mA	0.4 mA
	OFF	15.3 mA	15 mA	
3.3V	ON	14.3 mA	13.8 mA	0.09 mA
	OFF	14 mA	13.6 mA	


Power consumption Absolute max ratings

Parameter	MIN	TYP	MAX
Storage temperature (EZO™ RTD)	-65 °C		125 °C
Operational temperature (EZO™ RTD)	-40 °C	25 °C	85 °C
VCC	3.3V	5V	5.5V

EZO[™] RTD temperature circuit range

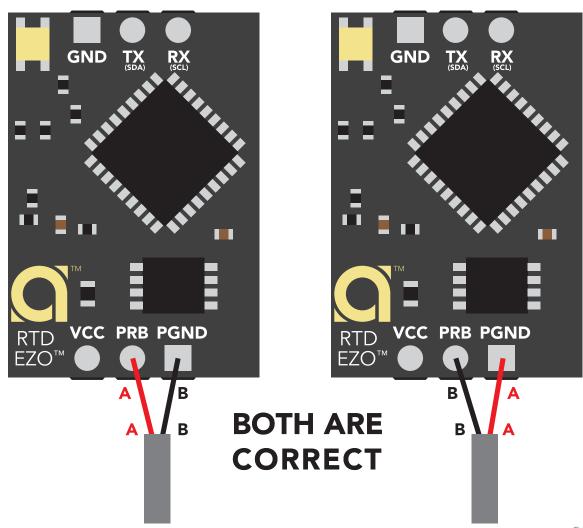
EZO™RTD temperature circuit accuracy

Atlas Scientific PT-1000 probe

- Accuracy +/-(0.15 + (0.002*t))
- Probe type: class A platinum, RTD
- Cable length: 81cm (32")
- Cable material: silicone rubber
- 30mm sensing area (304 SS)
- 6mm diameter
- BNC connector
- Reaction time: 90% value in 13 seconds
- Probe output: analog
- Full sensing range -200 °C to 850 °C
- Cable max temp 125 °C
- Cable min temp -55 °C

The Atlas Scientific EZO™ RTD Temperature circuit only works with PT-100 and PT-1000 probes.

To read temperatures above, or below the max cable temperature, an additional probe housing (thermowell) is needed to protect the cable.

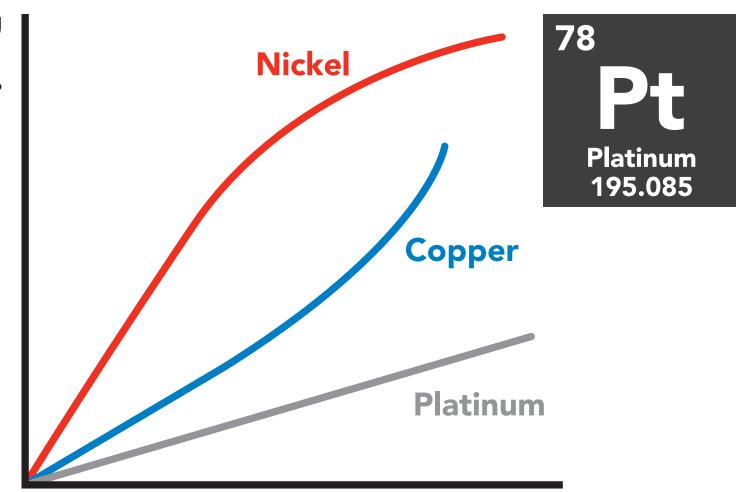


Using other brand PT-100/PT-1000

The EZO™ RTD Temperature circuit will auto-detect if the connected probe is PT-100 or PT-1000.

Probe class	Accuracy
AA	+/- (0.10°C + 0.0017 × T)
٨	. / /0.15°C . 0.002 v T)
А	+/- (0.15°C + 0.002 × T)
R	1 / (0.3°C + 0.00E × T)
В	+/-(0.3°C + 0.005 × T)
С	+/- (0.6°C + 0.01 × T)

It makes no difference which lead of the temperature probe is connected to the two probe pins.


Operating principle

The Atlas Scientific EZO™ RTD Temperature circuit is a small footprint computer system that is specifically designed to be used in robotic applications where the embedded systems engineer requires accurate and precise measurements of temperature through a generic PT-100/PT-1000 temperature probe.

RTD = Resistance Temperature Detector PT = Platinum PT-100 = 100 Ω at 0°C PT-1000 = 1k Ω at 0°C

Unlike any other material, platinums correlation between resistance and temperature seems to be woven into the fabric of the universe. It is for this reason, that the platinum RTD temperature sensor is the industrial standard for temperature measurement.

Resistance

Temperature °C

Calibration theory

The most important part of calibration is watching the readings during the calibration process. It's easiest to calibrate the device in its default state (UART mode, continuous readings). Switching the device to I²C mode after calibration **will not** affect the stored calibration. If the device must be calibrated in I²C mode be sure to request readings continuously so you can see the output from the probe.

Calibration can be done at any value, a simple method is to calibrate the probe in boiling water.

100 °C

Atlas Scientific recommends calibration be done every three years.

Elevation and Boiling Point table

Elevation in meters
305
229
152
76
0
-76

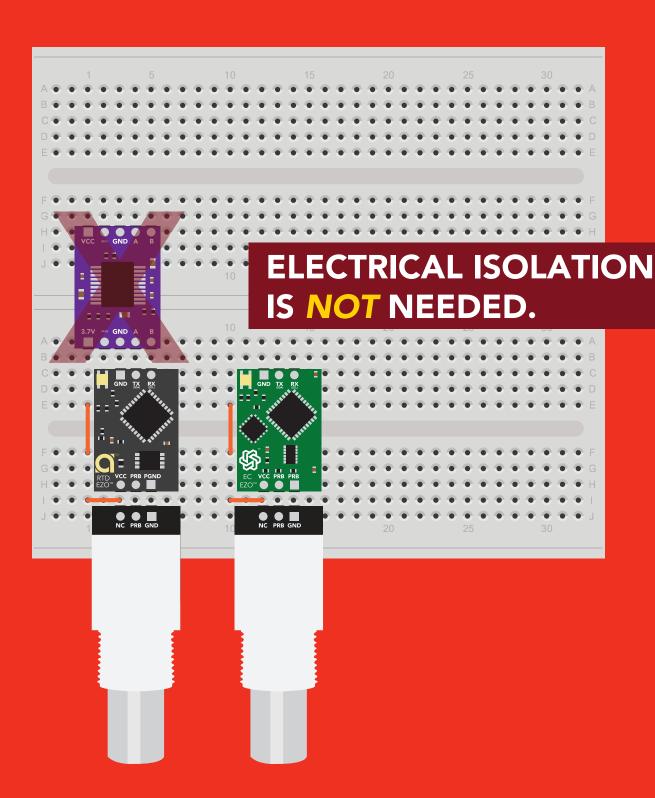
Boiling	g point
98.9	°C
99.2	°C
99.5	°C
99.7	°C
100	°C
100.3	°C
100.5	°C

Use purified/distilled water

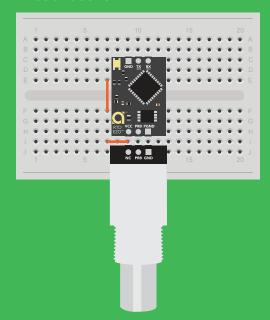
For accurate calibration using different temperature vaules, you must use a tool called a "dry block calibrator."

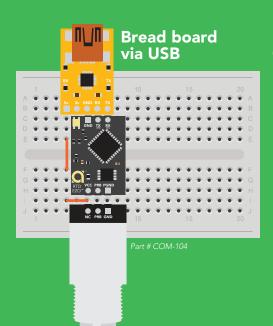
On board data logger

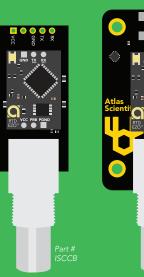
- 50 readings
- Programmable storage interval


Minimum – 10 seconds Maximum – 320,000 seconds

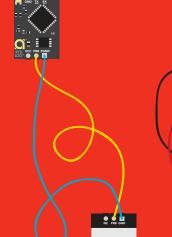
Temperature readings that are stored to the data logger will be retained even if the power is cut.


Power and data isolation



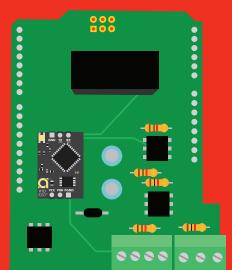

Correct wiring

Bread board


Carrier board

USB carrier board

Incorrect wiring



Extended leads

Sloppy setup

Perfboards or Protoboards or Protoboards

*Embedded into your device

*Only after you are familar with EZO™circuits operation

Available data protocols

UART

Default

1²C

X Unavailable data protocols

SPI

Analog

RS-485

Mod Bus

4-20mA

UART mode

Settings that are retained if power is cut

Baud rate

Calibration

Continuous mode

Device name

Enable/disable response codes

Hardware switch to I²C mode

LED control

Protocol lock

Software switch to I²C mode

Settings that are **NOT** retained if power is cut

Find Sleep mode

JART mode

8 data bits 1 stop bit

no parity no flow control

Baud 300

1,200

2,400

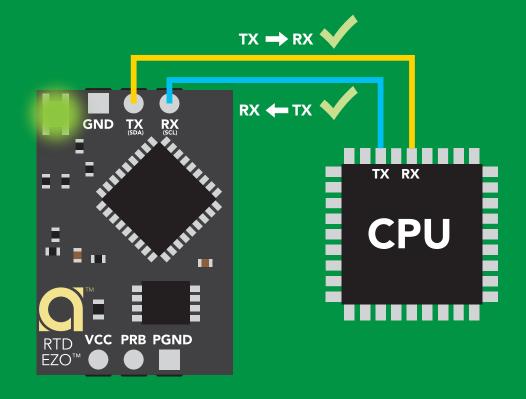
9,600 default

19,200

38,400

57,600

115,200



Vcc 3.3V - 5.5V

Data format

Reading temperature

°C, °K, or °F Units

Encoding ASCII

Format string

Terminator carriage return

Data type

Decimal places

Smallest string

Largest string

floating point

3

4 characters

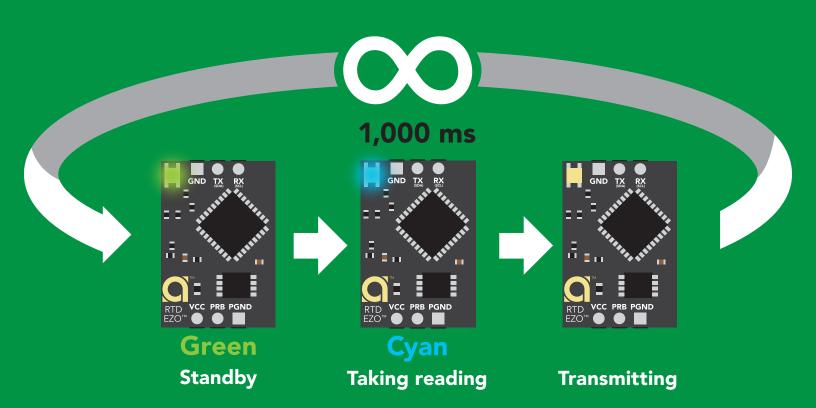
399 characters

Default state

Mode **UART**

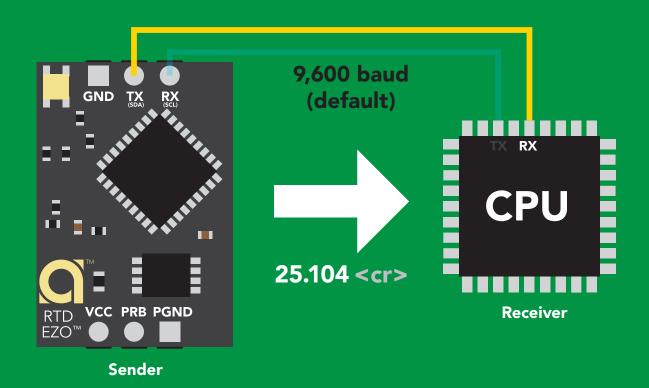
9,600 **Baud**

°C **Temperature**


Readings continuous

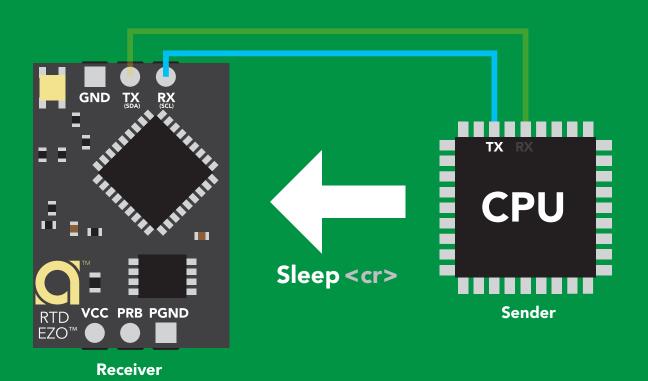
Speed 1 reading per second

With probe ttt.ttt


Without probe -1023.000

LED on

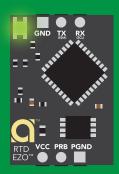
Receiving data from device

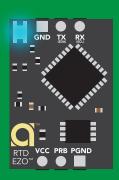


Advanced

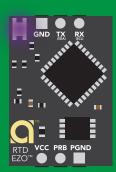
ASCII: 2 32 35 2E 31 30 34
 50
 53
 46
 49
 48
 52
 13
 Dec:

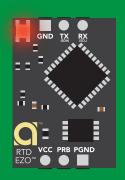
Sending commands to device

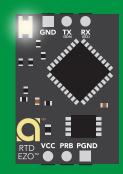



Advanced

ASCII: s 53 6C 65 65 70 83 108 101 101 112 Dec:


LED color definition




Cyan **Taking reading**

Changing baud rate

Command not understood

White Find

LED ON **5V** +0.4 mA +0.2 mA

UART mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command Fu	nction		Default state
Baud	change baud rate	pg. 36	9,600
С	enable/disable continuous reading	pg. 23	enabled
Cal	performs calibration	pg. 25	n/a
D	enable/disable data logger	pg. 28	disabled
Export/import	export/import calibration	pg. 26	n/a
Factory	enable factory reset	pg. 38	n/a
Find	finds device with blinking white LED	pg. 22	n/a
i	device information	pg. 32	n/a
I2C	change to I ² C mode	pg. 39	not set
L	enable/disable LED	pg. 21	enabled
M	memory recall/clear	pg. 29	n/a
Name	set/show name of device	pg. 31	not set
Plock	enable/disable protocol lock	pg. 37	disabled
R	returns a single reading	pg. 24	n/a
S	temperature scale (°C, °K, °F)	pg. 27	celsius
Sleep	enter sleep mode/low power	pg. 35	n/a
Status	retrieve status information	pg. 34	n/a
*OK	enable/disable response codes	pg. 33	enable

LED control

Command syntax

L,1 <cr> LED on default

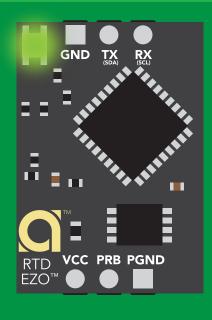
L,0 <cr> LED off

L,? <cr> LED state on/off?

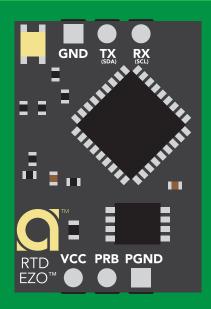
Example

Response

L,1 <cr>


*OK <cr>>

L,0 <cr>


*OK <cr>>

L,? <cr>

?L,1 <cr> or ?L,0 <cr> *OK <cr>

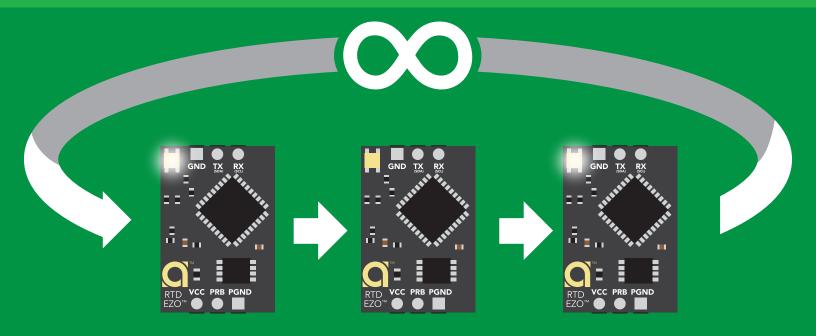
L,1

L,0

Find

Command syntax

This command will disable continuous mode Send any character or command to terminate find.


LED rapidly blinks white, used to help find device

Example

Response

Find <cr>

*OK <cr>>

Continuous reading mode

Command syntax

C,1 <cr> enable continuous readings once per second default

C,n <cr> continuous readings every n seconds (n = 2 to 99 sec)

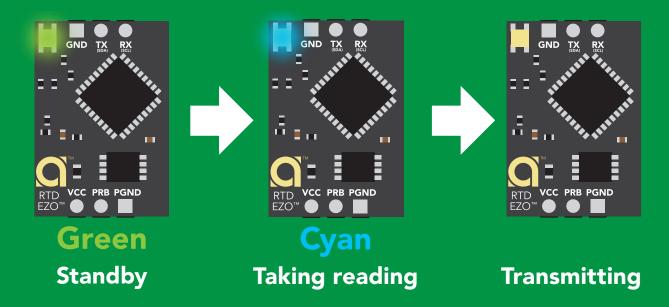
C,0 <cr> disable continuous readings

C,? <cr> continuous reading mode on/off?

Example	Response
C,1 <cr></cr>	*OK < cr > °C (1 sec) < cr > °C (2 sec) < cr > °C (n sec) < cr >
C,30 <cr></cr>	*OK <cr> °C (30 sec) <cr> °C (60 sec) <cr> °C (90 sec) <cr></cr></cr></cr></cr>
C,0 <cr></cr>	*OK <cr></cr>
C,? <cr></cr>	?C,1 <cr> or ?C,0 <cr> or ?C,30 <cr> *OK <cr></cr></cr></cr></cr>

Single reading mode

Command syntax


R <cr> takes single reading

Example

Response

R <cr>

25.104 <cr> *OK <cr>

Calibration

Command syntax

The EZO™ RTD circuit uses single point calibration.

Cal,t <cr> t = any temperature

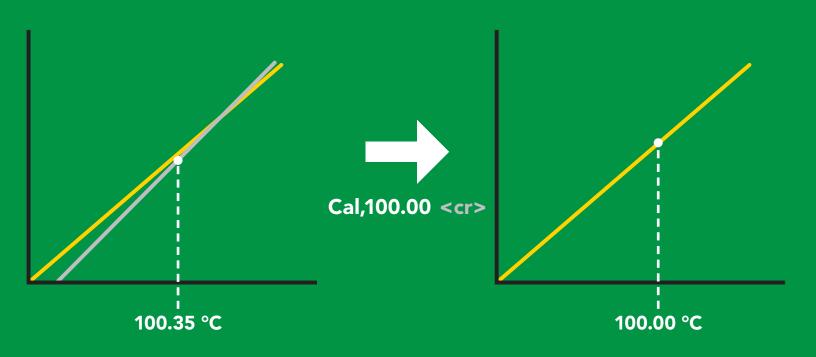
Cal, clear <cr> delete calibration data

<cr> device calibrated? Cal,?

Example

Response

Cal,100.00 <cr>


*OK <cr>

Cal, clear <cr>

*OK <cr>

Cal,? <cr>

?Cal,1 <cr> or ?Cal,0 <cr> *OK <cr>

Export/import calibration

Command syntax

Export: Use this command to save calibration settings Import: Use this command to load calibration settings to one or more devices.

export calibration string from calibrated device **Export** <cr>

import calibration string to new device **Import** <cr>

Export,? <cr> calibration string info

Example

Response

Export,? <cr>

10,120 <cr>

Response breakdown 10, 120

of strings to export # of bytes to export

Export strings can be up to 12 characters long, and is always followed by <cr>

Export <cr>

Export <cr>

(**7** more)

Export <cr>

Export <cr>

59 6F 75 20 61 72 <cr> (1 of 10)

65 20 61 20 63 6F <cr> (2 of 10)

6F 6C 20 67 75 79 <cr> (10 of 10)

*DONE

Disabling *OK simplifies this process

Import, n (FIFO)

Import, 59 6F 75 20 61 72 <cr> (1 of 10)

Temperature scale (°C, °K, °F)

Command syntax

S,c <cr> celsius default

S,k <cr> kelvin

S,f <cr> fahrenheit

S,? <cr> temperature scale?

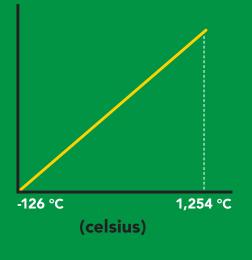
Example

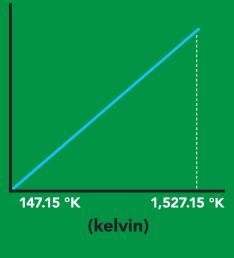
Response

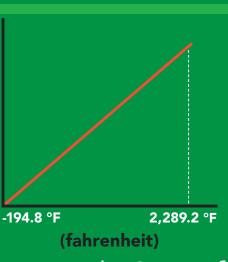
S,c <cr>

*OK <cr>

S,k <cr>


*OK <cr>


S,f <cr>


*OK <cr>

S,? <cr>

?S,c <cr> or ?S,k <cr> or ?S,f <cr> *OK <cr>

Enable/disable data logger

Command syntax

The time period (n) is in 10 second intervals and can be any value from 1 to 32,000.

 \overline{D} , $n < cr > n = (n \times 10 \text{ seconds})$

D,0 <cr> disable default

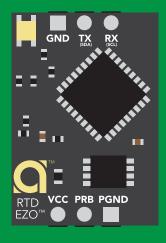
D,? <cr> data logger storage interval?

Example

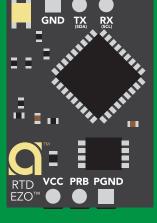
Response

D,6 <cr>

*OK <cr>


D,0 <cr>

*OK <cr>


D,? <cr>

?D,6 <cr>

*OK <cr>

D,6

60 seconds

* <cr>

* indicates reading has been logged

Memory recall

Command syntax

Disable data logger to recall memory.

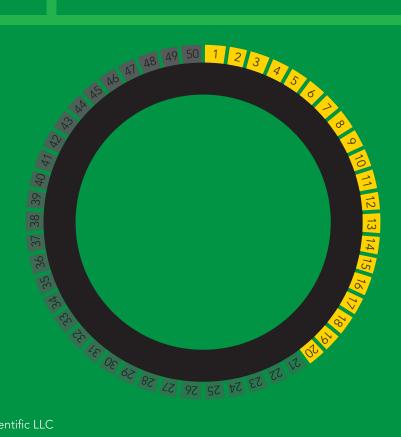
<cr> recall 1 sequential stored reading

M, all <cr> recall all readings in a CSV string

M,? <cr> display memory location of last stored reading

Example

Response


1,100.00 <cr> 2,104.00 <cr> *OK <cr>

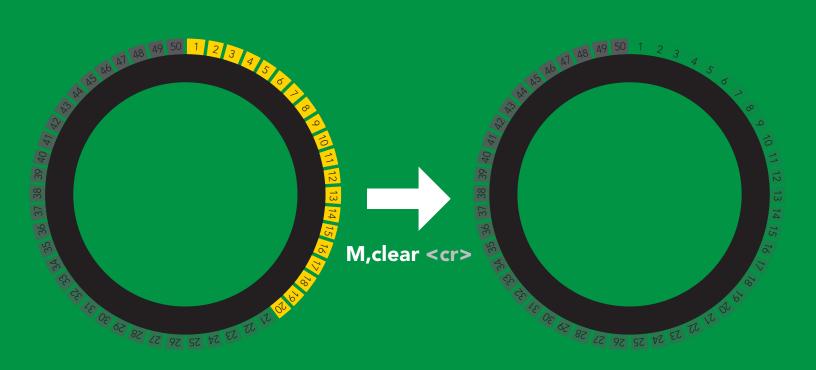
M,all <cr>

100.00,104.00,108.00,112.00 <cr> Oldest **Newest**

M,? <cr>

?M,4 <cr> *OK <cr>

Memory clear


Command syntax

M,clear <cr>> clear all stored memory

Example Response

M,clear <cr>

*OK <cr>>

Naming device

Command syntax

Name,n <cr> set name

Name,? <cr> show name

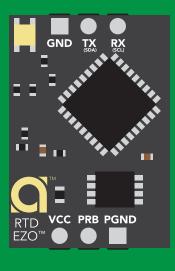
n = 4 5 6 7 8 9 10 11 12 13 14 15 16

Up to 16 ASCII characters

Example

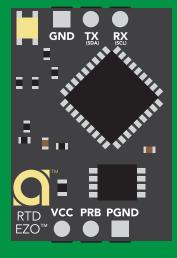
Name,zzt <cr>

Name,? <cr>


Response

*OK <cr>>

?Name,zzt <cr>


*OK <cr>

Name,zzt

*OK <cr>

Name,?

Name,zzt <cr> *OK <cr>

Device information

Command syntax

i <cr> device information

Example

Response

i <cr>

?i,RTD,2.01 <cr> *OK <cr>>

Response breakdown

?i, RTD, 2.01 Device Firmware

Response codes

Command syntax

*OK,1 <cr> enable response

default

*OK,0 <cr> disable response

*OK,? <cr> response on/off?

Example

Response

R <cr>

25.104 <cr>

*OK <cr>

*OK,0 <cr>

no response, *OK disabled

R <cr>

25.104 <cr> *OK disabled

*OK,? <cr>

?*OK,1 <cr> or ?*OK,0 <cr>

Other response codes

unknown command *ER

*OV over volt (VCC>=5.5V)

*UV under volt (VCC<=3.1V)

*RS reset

*RE boot up complete, ready

entering sleep mode *SL

*WA wake up These response codes cannot be disabled

Reading device status

Command syntax

Status <cr> voltage at Vcc pin and reason for last restart

Example

Response

Status <cr>

?Status, P, 5.038 < cr>

*OK <cr>

Response breakdown

?Status,

5.038

Reason for restart

Voltage at Vcc

Restart codes

powered off

software reset

brown out

watchdog W

unknown

Sleep mode/low power

Command syntax

Send any character or command to awaken device.

Sleep <cr> enter sleep mode/low power

Example

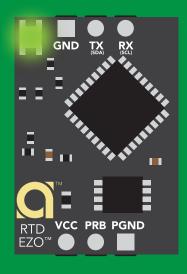
Response

Sleep <cr>

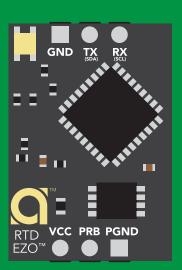
*SL

Any command

*WA <cr> wakes up device


5V

STANDBY SLEEP


15.40 mA 0.4 mA

3.3V

13.80 mA $0.09 \, \text{mA}$

Sleep <cr>

Standby 15.40 mA

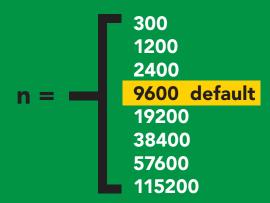
Sleep 3.00 mA

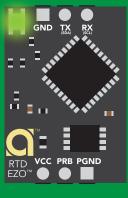
Change baud rate

Command syntax

Baud,n <cr> change baud rate

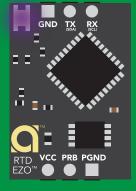
Example


Response

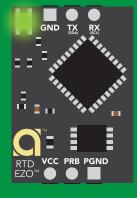

Baud, 38400 < cr>

*OK <cr>

Baud,? <cr>


?Baud,38400 <cr> *OK <cr>

Baud, 38400 < cr >


Standby

Changing baud rate

*OK <cr>

Standby

Protocol lock

Command syntax

Locks device to UART mode.

Plock,1 <cr> enable Plock

default Plock,0 <cr> disable Plock

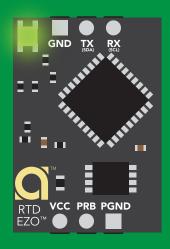
Plock,? <cr> Plock on/off?

Example

Response

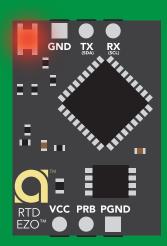
Plock,1 <cr>

*OK <cr>

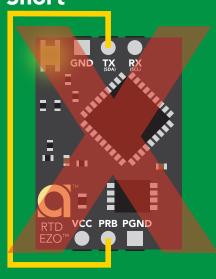

Plock,0 <cr>

*OK <cr>

Plock,? <cr>


?Plock,1 <cr> or ?Plock,0 <cr>

Plock,1


*OK <cr>

I2C,100

cannot change to I²C *ER <cr>

Short

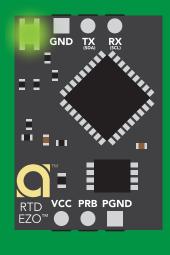
cannot change to I²C

Factory reset

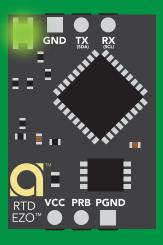
Command syntax

Clears calibration LED on "*OK" enabled Clears data logger

Factory <cr> enable factory reset


Example

Response


Factory <cr>

*OK <cr>>

Factory <cr>

*OK <cr>

*RS <cr> *RE <cr>

Baud rate will not change

Change to I²C mode

Command syntax

Default I²C address 102 (0x66)

I2C,n <cr> sets I2C address and reboots into I2C mode

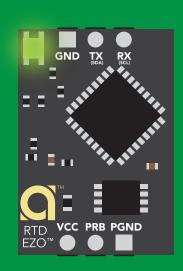
n = any number 1 - 127

Example

Response

12C,100 <cr>

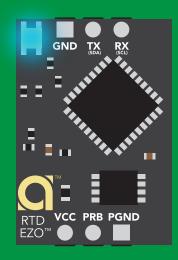
*OK (reboot in I²C mode)


Wrong example

Response

12C,139 <cr> n ≯ 127

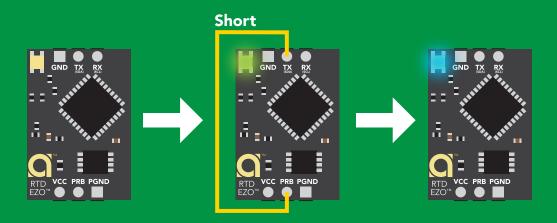
*ER <cr>

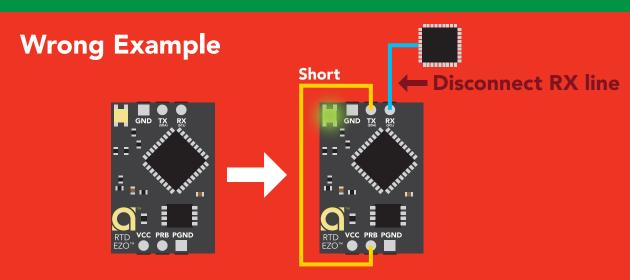

12C,100

Green *OK <cr>

(reboot)

Blue now in I²C mode


Manual switching to I²C


- Make sure Plock is set to 0
- Disconnect ground (power off)
- Disconnect TX and RX
- Connect TX to PRB
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Green to Blue
- Disconnect ground (power off)
- Reconnect all data and power

Connecting TX to PRB only works for the EZO™ RTD Temperature circuit.

Manually switching to I²C will set the I²C address to 102 (0x66)

Example

l²C mode

The I²C protocol is considerably more complex than the UART (RS-232) protocol. Atlas Scientific assumes the embedded systems engineer understands this protocol.

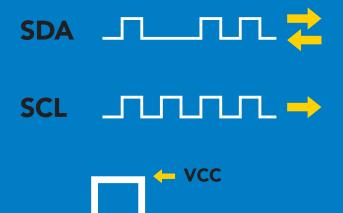
To set your EZO™ device into I²C mode click here

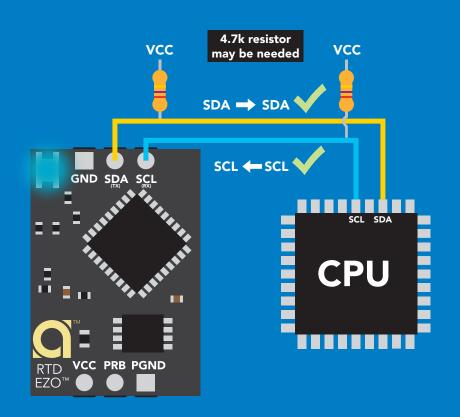
Settings that are retained if power is cut

Calibration
Change I²C address
Hardware switch to UART mode
LED control
Protocol lock
Software switch to UART mode

Settings that are **NOT** retained if power is cut

Find Sleep mode


I²C mode


I²C address (0x01 - 0x7F)

102 (0x66) default

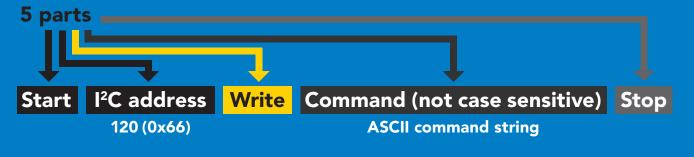
3.3V - 5.5VVcc

Clock speed 100 - 400 kHz

Data format

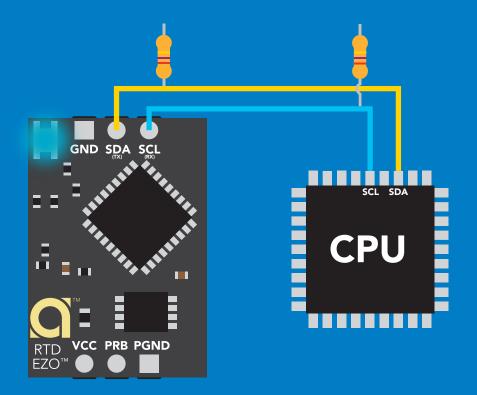
Reading temperature

°C, °K, or °F Units

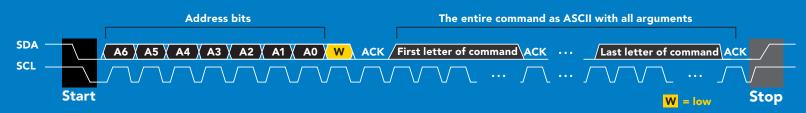

Encoding ASCII

Format string

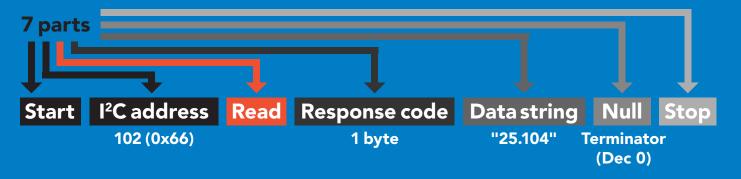
Data type **Decimal places 3 Smallest string 4 characters** Largest string

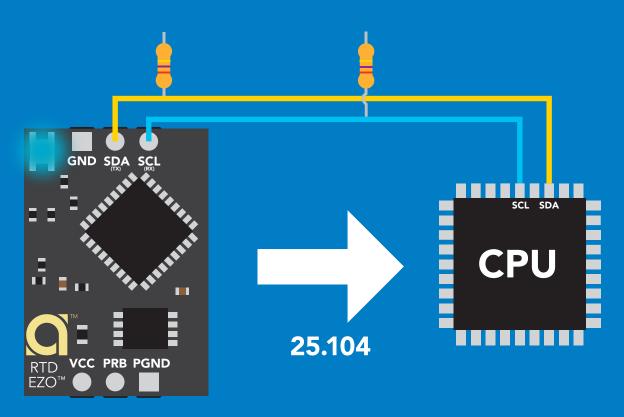

floating point 14 characters

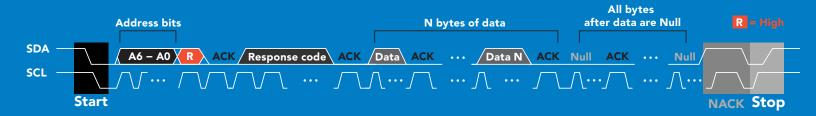
Sending commands to device



Example

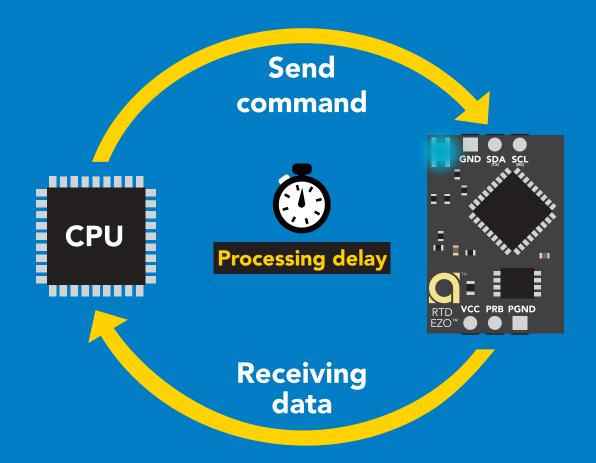



Advanced



Requesting data from device

Advanced



Response codes

After a command has been issued, a 1 byte response code can be read in order to confirm that the command was processed successfully.

Reading back the response code is completely optional, and is not required for normal operation.

Example

I2C_start;

I2C address:

I2C_write(EZO_command);

I2C_stop;

delay(300);

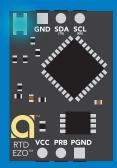
I2C start; I2C address; Char[] = I2C_read; I2C_stop;

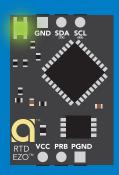
If there is no processing delay or the processing delay is too short, the response code will always be 254.

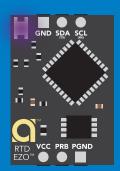
Response codes

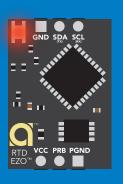
Single byte, not string

255 no data to send


254 still processing, not ready


2 syntax error


successful request




LED color definition

I²C standby

Green

Taking reading

Changing I²C ID#

Command not understood White

Find

LED ON **5V** +0.4 mA $+0.2 \, \text{mA}$

I²C mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function	
Baud	switch back to UART mode	pg. 63
Cal	performs calibration	pg. 51
D	enable/disable data logger	pg. 54
Export/import	export/import calibration	pg. 52
Factory	enable factory reset	pg. 62
Find	finds devices with white blinking LED	pg. 49
i	device information	pg. 57
I2C	change I ² C address	pg. 61
L	enable/disable LED	pg. 48
М	memory recall/clear	pg. 55
Plock	enable/disable protocol lock	pg. 60
R	returns a single reading	pg. 50
S	temperature scale (°C, °K, °F)	pg. 53
Sleep	enter sleep mode/low power	pg. 59
Status	retrieve status information	pg. 58

LED control

Command syntax

300ms processing delay

L,1 LED on default

L,0 **LED** off

LED state on/off? **L,?**

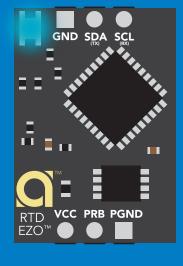
Example

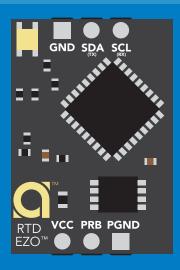
Response

L,1

L,0

L,?





L,0

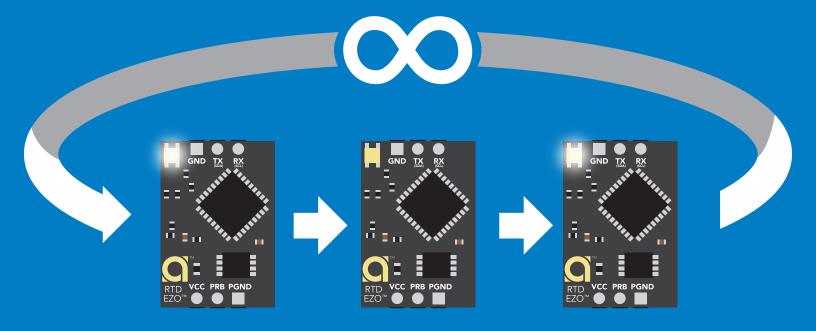
Find

Command syntax

This command will disable continuous mode Send any character or command to terminate find.

LED rapidly blinks white, used to help find device **Find**

Example


Response

Find <cr>

Taking reading

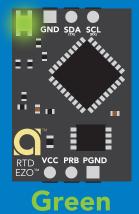
Command syntax

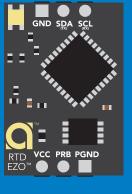
600ms processing delay

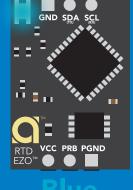
return 1 reading R

Example

Response


R





Standby

Calibration

Command syntax

600ms processing delay

t = any temperature Cal,t Cal, clear delete calibration data Cal,? device calibrated?

EZO™ RTD circuit uses single point calibration.

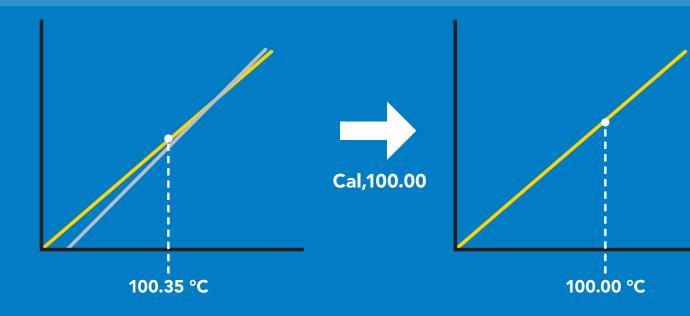
Example

Response

Cal,t

Cal, clear

Cal,?



?Cal,1 ASCII

?Cal,0

Export/import calibration

Command syntax

Export: Use this command to save calibration settings Import: Use this command to load calibration settings to one or more devices.

Export Import Export,? export calibration string from calibrated device import calibration string to new device calibration string info

300ms Processing delay

Example

Export,?

Response

Export strings can be up to 12 characters long

Export

(8 more)

Export

Export

Import, n (FIFO)

Import, 59 6F 75 20 61 72 (1 of 10) **ASCII**

ASCII

Temperature scale (°C, °K, °F)

Command syntax

300ms processing delay

- S,c celsius <mark>default</mark>
- S,k kelvin
- S,f fahrenheit
- S,? temperature scale?

147.15 °K

(kelvin)

1,527.15 °K

2,289.2 °F

(fahrenheit)

-126 °C

(celsius)

1,254 °C

Enable/disable data logger

Command syntax

300ms processing delay

 $n = (n \times 10 \text{ seconds})$ D,n

The time period (n) is in 10 second intervals and can be any value from 1 to 32,000.

D,0 disable

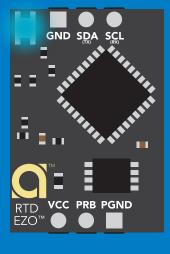
data logger storage interval? **D**,?

Example

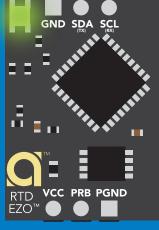
Response

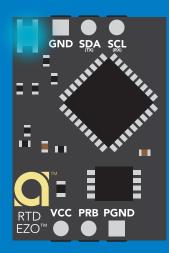
D,6

D,0


D,?







Memory recall

Command syntax

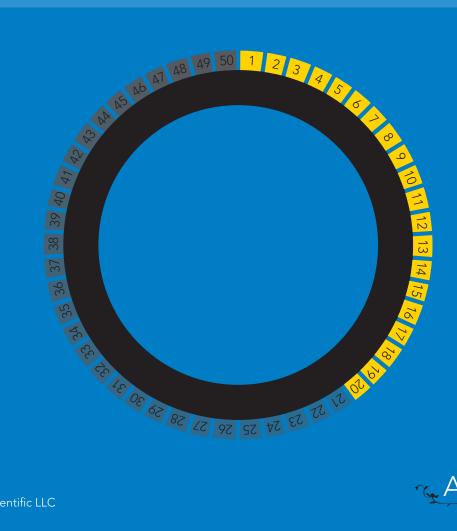
300ms processing delay

- recall 1 sequential stored reading M
- M,? display memory location of last stored reading

Example

Response

M


M,?

4,112.00 **ASCII**

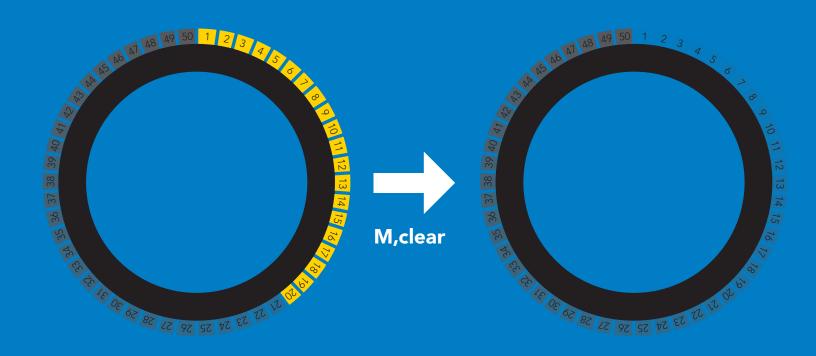
Memory clear

Command syntax

300ms processing delay

M,clear clear all stored memory

Example


Response

M,clear

Device information

Command syntax

device information

Example

Response

i

Response breakdown

?i, RTD, 2.01 Device **Firmware**

Reading device status

Command syntax

voltage at Vcc pin and reason for last restart

Example

Response

Status

?Status,P,5.038

ASCII

Response breakdown

?Status,

5.038

Reason for restart

Voltage at Vcc

Restart codes

powered off

S software reset

В brown out

watchdog W

U unknown

Sleep mode/low power

Command syntax

enter sleep mode/low power Sleep

Send any character or command to awaken device.

Example

Response

Sleep

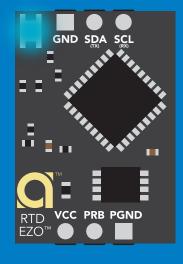
no response

Do not read status byte after issuing sleep command.

Any command

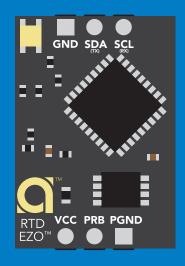
wakes up device

5V


STANDBY SLEEP

15.40 mA

0.4 mA


3.3V

13.80 mA $0.09 \, \text{mA}$

Standby

Sleep

Protocol lock

Command syntax

300ms processing delay

Plock,1 enable Plock

Plock,0 disable Plock

Plock on/off?

default

Locks device to I²C mode.

Example

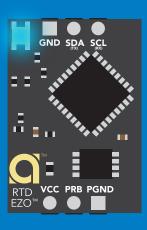
Plock,?

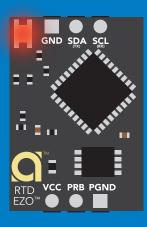
Plock,1

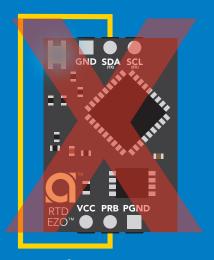
Response

Plock,0

Plock,?






Plock,1

Baud, 9600

cannot change to **UART**

cannot change to UART

I²C address change

Command syntax

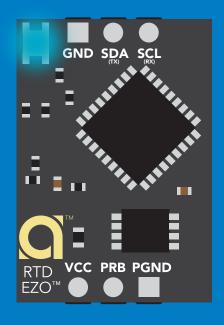
I2C,n sets I²C address and reboots into I²C mode

Example

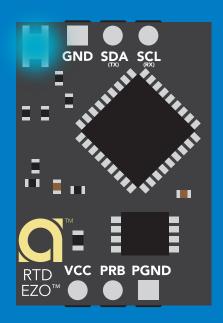
Response

I2C,100

device reboot


Warning!

Changing the I²C address will prevent communication between the circuit and the CPU, until the CPU is updated with the new I²C address.


Default I²C address is 102 (0x66).

n = any number 1 - 127

12C,100

Factory reset

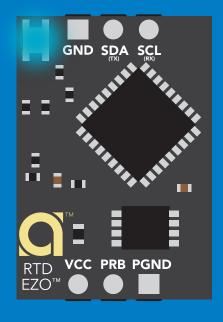
Command syntax

Factory reset will not take the device out of I²C mode.

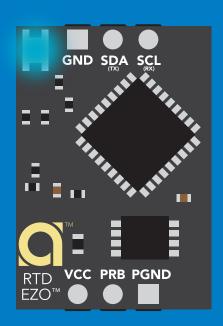
enable factory reset **Factory**

I²C address will not change

Example


Response


Factory

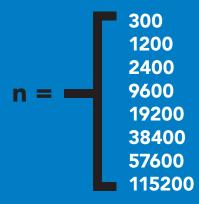

device reboot

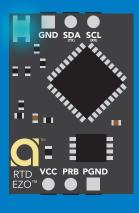
Clears calibration LED on Response codes enabled Clears data logger

Factory

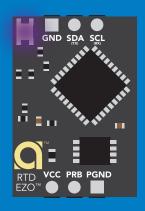
Change to UART mode

Command syntax

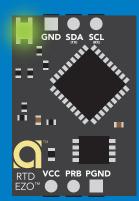

switch from I²C to UART Baud,n


Example

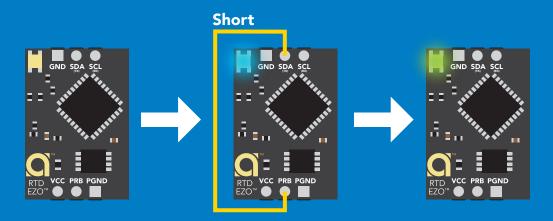
Response

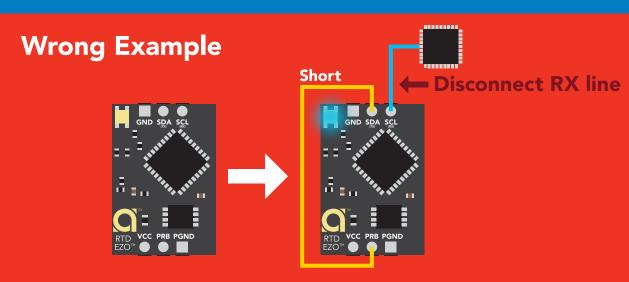

Baud, 9600

reboot in UART mode



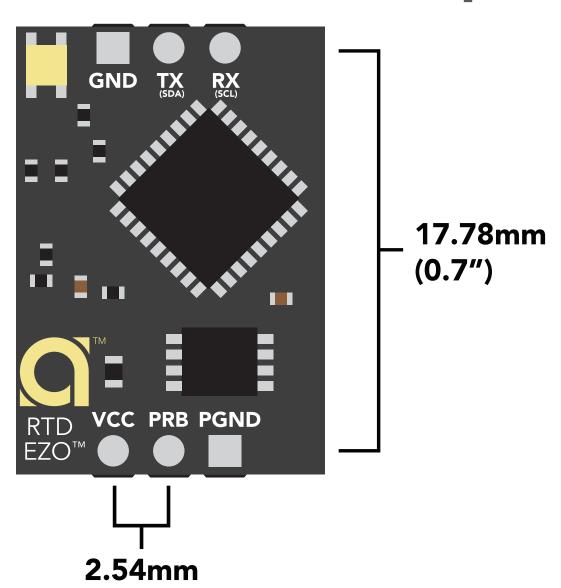
Changing to UART mode



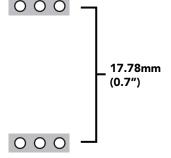

Manual switching to UART

- Make sure Plock is set to 0
- **Disconnect ground (power off)**
- Disconnect TX and RX
- Connect TX to PRB
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Blue to Green
- Disconnect ground (power off)
- Reconnect all data and power

Connecting TX to PRB only works for the EZO™ RTD Temperature circuit.


Example

EZO[™] circuit footprint


In your CAD software place an 8 position header.

(0.1")

- Place a 3 position header at both top and bottom of the 8 position.
- Delete the 8 position header. The two 3 position headers are now 17.78mm (0.7") apart from each other.

Datasheet change log

Datasheet V 2.9

Removed note from certain commands about firmware version.

Datasheet V 2.8

Added information to calibration theory on pg 9.

Datasheet V 2.7

Revised definition of response codes on pg 45.

Datasheet V 2.6

Updated calibration processing delay time on pg.51.

Datasheet V 2.5

Revised Plock pages to show default value.

Datasheet V 2.4

Added new commands:

"Find" pages 22 & 49.

"Export/Import calibration" pages 26 & 52.

Added new feature to continous mode "C,n" pg 23.

Datasheet V 2.3

Added manual switching to UART information on pg. 59.

Datasheet V 2.2

Revised Baud command information on pg. 33.

Datasheet V 2.1

Revised entire datasheet.

Firmware updates

V1.02 – Plock (March 31, 2016)

• Added protocol lock feature "Plock"

V1.03 - EEPROM (April 26, 2016)

• Fixed glitch where EEPROM would get erased if the circuit lost power 900ms into startup

V1.11 – Glitch Fix (June 9, 2016)

• Fixed glitch where a blank name would result in garbage ouput

V2.01 – Update (January 1, 2017)

- Replaced command "response" with "*OK"
- Replaced command "Serial" with "Baud"

V2.02 – Glitch Fix (February 16, 2017)

• Fixed glitch where calibration would not accept floating point numbers.

V2.10 - (May 9, 2017)

- Added "Find" command.
- Added "Export/import" command.
- Modified continuous mode to be able to send readings every "n" seconds.
- Sleep current is lowered.

Warranty

Atlas Scientific™ Warranties the EZO™ class RTD circuit to be free of defect during the debugging phase of device implementation, or 30 days after receiving the EZO™class RTD circuit (which ever comes first).

The debugging phase

The debugging phase as defined by Atlas Scientific[™] is the time period when the EZO[™] class RTD circuit is inserted into a bread board, or shield. If the EZO™ class RTD circuit is being debugged in a bread board, the bread board must be devoid of other components. If the EZO™ class RTD circuit is being connected to a microcontroller, the microcontroller must be running code that has been designed to drive the EZO™ class RTD circuit exclusively and output the EZO™ class RTD circuit data as a serial string.

It is important for the embedded systems engineer to keep in mind that the following activities will void the EZO™ class RTD circuit warranty:

- Soldering any part of the EZO[™] class RTD circuit.
- Running any code, that does not exclusively drive the EZO™ class RTD circuit and output its data in a serial string.
- Embedding the EZO™ class RTD circuit into a custom made device.
- Removing any potting compound.

Reasoning behind this warranty

Because Atlas Scientific™ does not sell consumer electronics; once the device has been embedded into a custom made system, Atlas Scientific™ cannot possibly warranty the EZO™ class RTD circuit, against the thousands of possible variables that may cause the EZO™ class RTD circuit to no longer function properly.

Please keep this in mind:

- 1. All Atlas Scientific™ devices have been designed to be embedded into a custom made system by you, the embedded systems engineer.
- 2. All Atlas Scientific™ devices have been designed to run indefinitely without failure in the field.
- 3. All Atlas Scientific™ devices can be soldered into place, however you do so at your own risk.

Atlas Scientific™ is simply stating that once the device is being used in your application, Atlas Scientific[™] can no longer take responsibility for the EZO[™] class RTD circuits continued operation. This is because that would be equivalent to Atlas Scientific™ taking responsibility over the correct operation of your entire device.